ISCTE – IUL

Optimization

优化考试助攻代写 Part 1 (7.0 points) 1.Let A, B, C and D be matrices with real entries suchthat:A ∈ M3×3and |A| = 4;Bis a matrix in the row echelon form that is ···

Finance and Accounting, Management, Marketing Management

July 22nd, 2020

School Year 2019/2020, 2nd Semester

Special Season Exam                                       Total Time: 2h15 (plus 15min of tolerance)


Name:

Student Number:

Class:

Professor:


Important observations 优化考试助攻代写 :

Theuse of calculators is not allowed and all electronic devices must be turned off for  the whole duration of test.

Theuse of course materials or any other consultation materials is not allowed.

Allreplies must be properly justified and written on the sheets provided, and the staple must not be Red ink and pencils are not allowed.

Thelast sheet may be used for auxiliary computations, or, exceptionally, to answer questions, if extra space is allowed.

No questions will be answered.


Question Points:

Part 1  优化考试助攻代写

(7.0 points)

1.

Let A, B, C and D be matrices with real entries suchthat:

  • A M3×3and |A| = 4;
  • Bis a matrix in the row echelon form that is obtained from A by applying the following sequence of elementary row operations:

R1 R2 ; R1 1 R1 ; R3 R3 3R2

  • Cis the matrix corresponding to the quadratic form Q(x, y, z) = x2  y2  z2 + 2yz;
优化考试助攻代写

3.

2

4.

3

Part 2  优化考试助攻代写

(13.0 points)

In the questions of Part 2 you should present your reasoning clearly, indicating all necessary calculations and justifications.

1.

Consider the linear system with unknowns x, y and z,

4

where α and β are real parameters.

(0.5 pts.) (a) Writethe given system in the matrix equation form AX B, where X = [x y z]T

is a column-vector containing the unknowns.

(1.5 pts.) (b) UsingGaussian elimination, classify the system as a function of the real parameters

α and β.

(0.5 pts.) (c) Usingthe previous paragraph, solve the system for α β = 1.

(0.5 pts.) (d) Ifwe look at the parameter β as an additional unknown, we still obtain a linear  Represent such system in the matrix equation form CY D, where Y = [x y z β]T , that is, determine the rectangular matrix C and the column-vector D.

2. 

Let A be a 3 × 3 matrix suchthat:

优化考试助攻代写

(0.5 pts.) (a) What is the value of det(A + 4I3)?

(0.5 pts.) (b) Justifythat λ = 0 is an eigenvalue of A and (0, 1, 0) is a corresponding

eigenvector.

(0.5 pts.) (c) Justify that A is diagonalizable.

(0.5 pts.) (d) Find an invertiblematrix P M3×3  and a diagonal matrix D M3×3 such that D = P 1AP .

(0.5 pts.) (e) Withoutperforming any calculation, explain how to use the matrices P and D from the previous paragraph to compute the power matrix A5.

3.  优化考试助攻代写

Let A be an invertible matrix of size n × n and let λ be an eigenvalue of A and v a corresponding eigenvector.

(0.5 pts.) (a)Prove that λ is also an eigenvalue of AT.

(0.5 pts.) (b)Provethat v is also an eigenvector of A1 and indicate the corresponding

6

4.

Consider the real function of two realvariables

f (x, y) = x3 3xy2 + 6x2 6y2 + 2

(1.5 pts.) (a) Find the critical points of f and classify them.

(0.5 pts.) (b) Determinean equation of the tangent plane to the graph surface of f at the point

(1, 1, 0).

(0.5 pts.) (c)Determinethe direction of greatest rate of increase of f at the point (1, 1).

7

5.  优化考试助攻代写

Considerthe function f (x, y) = x2  y2.

(0.5 pts.) (a) Justifythat f has absolute extrema when subject to the condition x2 + y2 = 1.

(1.5 pts.) (b) UsingLagrange Multipliers Method, determine the values of the absolute extrema of

f subject to x2 + y2 = 1.

(0.5 pts.) (c) Canthe existence of absolute extrema of f be guaranteed if no restrictions to the domain of f are imposed?

优化考试助攻代写

联系客服提交作业获取报价与时间?

最快2~12小时即可完成,用技术和耐心帮助客户高效高质量完成作业.