MATH 487/587

Fall 2021

澳洲MATH数学代考 3(20pt). Let R4 be equipped with the Minkowski metric. The Hodge star operator y is a linear transformation on the space of 2-forms ∧2(R4).

Name:                          ID:

Note: Show steps for your work.

1(20pt) Prove Einstein’s energy-mass equation E = mc2, where c is the speed of light in vacuum.  澳洲MATH数学代考

2(20pt). Let R be a rectangle in the (s, t)-plane. Derive the Euler-Lagrange equation for the function x(s, t) that minimizes the integral

3(20pt). Let R4 be equipped with the Minkowski metric. The Hodge star operator y is a linear transformation on the space of 2-forms 2(R4).  澳洲MATH数学代考

(a)Show that y2= 1 on 2.

(b)Inview of (a), y has eigenvalues i and i with corresponding eigenspaces denoted by E+ and E, 2-forms in E+ are call self-dual forms, and that in E are called anti-self dual forms. Determine E+ and E.

澳洲MATH数学代考

4(20pt). Given vector fields E = (E1, E2, E3) and E = (E1, E2, E3), we let F be the associated Faraday 2-form.  澳洲MATH数学代考

(a)Showthat the Maxwell’s equations can be written as

dF = 0,   y d y F J,

where J is the current 1-form.

(b)Show that if F is self-dual or anti-self-daul then y d y F = 0, i.e., F satisfies the Maxwell’s equations in vacuum.  澳洲MATH数学代考

5(20pt). The electromagnetic Lagrangian is

where F is the Faraday 2-form, A is the potential 1-form and J is the current 1-form. Prove Proposition 11.4.1 in the textbook.

澳洲MATH数学代考

 

联系客服提交作业获取报价与时间?

最快2~12小时即可完成,用技术和耐心帮助客户高效高质量完成作业.