Final Exam

随机过程考试代写 After you have completed the assignment, please save, scan, or take photos of your work and upload your files to the questions below.

Submit your assignment Ø Help

After you have completed the assignment, please save, scan, or take photos of your work and upload your files to the questions below. Crowdmark accepts PDF, JPG, and PNG file formats.

 

Q1 (30 points)  随机过程考试代写

Suppose the cdf of (X, X2) is given by

F(x1,x2) =1-e-x1 + e-x2 + e-x1-x2

for x≥ 0,x2 ≥ 0 and is 0 otherwise.

a)(5 marks) Determine the joint probability density function of (X, X2).

b)(5 marks) Are  and  statistically independent? Justify your answer.

c)(5 marks) Determine the mean vector and variance matrix of (X, X2).

d)(5marks) Determine the mean vector and variance matrix of where

 

 

e)(5 marks) Are  and  in (d) statistically independent? Justify your answer.

f)(5 marks) Determine the joint density function of (Y, Y2)

 

Q2 (20 points)  随机过程考试代写

Suppose Z0 , Z1,…are i.i.d.N(0,1). With T = {1,2,…}, define the process by {(t,Xt) : t∈T }  by Xt ZtZt-1

a) (5 marks) Determine the mean and autocovariance functions of the  Xt process.

b) (5marks)If Z0=1 , Z1=3. Z2=-4Z3=2 then plot the first three values of the sample function of the Xprocess.

(c) (10 marks) Determine the moment generating function (mgf) mXt(s) of Xt (Hint: use the theorem of total expectation.) Does the mgf exist for all s ∈R1

 

Q3 (20 points)  随机过程考试代写

Suppose that h : RR1 is given by

 

 

(a) (5 marks) Prove that is h convex.

(b) (5 marks) Suppose that X = (X1X2X3X4)’ has a joint distribution with mean vector and variance matrix given by

 

随机过程考试代写

 

Determine a general lower bound on E(h(X)) .

(c) (5marks) If X~N4(μ,∑) , then determine E(h(X)) exactly.

(d) (5 marks) What is the best afinepredictor of  when X2 =(X3, X4) when X=  (X1X2)=(x1,x2) is observed? Under what conditions is this also the best predictor and explain what ”best”

 

随机过程考试代写

 

Q5 (10 points)

(10 marks) Suppose that Z0,Z1,… are i.i.d N(0,1) and X= 1/n + αZ+ βZn-1 . Determine whether or not {(n,X):n∈ N } is a stationary Gaussian process.

 

随机过程考试代写

 

联系客服提交作业获取报价与时间?

最快2~12小时即可完成,用技术和耐心帮助客户高效高质量完成作业.